An Accessibility Model for Adapting Structured Content for the Blind
Dustin Bray

May 4, 2007
Abstract
This paper presents a new model for adapting structured content for blind computer users. The discussion begins with a brief description of the current resources available to the blind and examines some of the difficulties in adapting non-linear content. A description of the accessibility model then follows.
Two simple examples are used throughout the paper to illustrate the problem and the proposed solution. The first example is a small table, which has a relatively simple structure. The second is a mathematical expression, whose structure has considerably more complexity than the table.

It should also be noted that, in the context of this paper, blind refers to complete blindness. Though the ideas presented here are intended to help persons with no usable vision, these concepts may be extended to low-vision computer users as well.

Background: The Screen Reader
A blind person can interact with his or her computer using a screen reader – an application that translates visual information from the screen into an accessible form through either voice-output or refreshable Braille display. For instance, a screen reader could voice a standard text document, such as this, word-for-word as would an actual person.
Though this solution may seem sufficient for everyday computer use, this assumption is quickly proving untrue. In today’s media-rich environment, textual content accounts for a much smaller portion of a document’s useful information. Tables, charts, graphs, equations, and other structured content present problems for the screen reader.
There are inherent difficulties in relaying nonlinear content to the blind user. Simply serializing structured content causes information loss and ambiguity. Consider a simple table with the following values:

	0
	1
	2

	3
	4
	5

How should the screen reader voice this? One description might simply be “table: 0, 1, 2, 3, 4, 5.” However, the user doesn’t know how these values are actually arranged in the table. A better description might be “a table with three columns and two rows having values 0, 1, 2, 3, 4, 5.” Now, the user must mentally keep track of how the values fall into the table’s cells. Another description may explicitly state the position and value of each cell: “Table: row 1, column 1, 0; row 1, column 2, 1; row 1, column 3, 2; row 2, column 1, 3; row 2, column 2, 4; row 2, column 3, 5.” Now imagine the description for a table with only ten rows and ten columns (having one-hundred values). As more structural information is incorporated, the description quickly becomes unmanageable. From this example, it is clear that the screen reader must trade between an accurate description of the structure and a concise description that the reader can understand.

This problem is especially apparent when attempting to adapt mathematics. Consider the quadratic formula:
[image: image1.png]
The above formula is represented using a graphic, which would be useless to a screen reader. This formula must be represented in some kind of text format to be accessible to a blind user.

The author might simply describe the formula in words, just as a person might read it aloud:

x equals negative b plus or minus the square

root of b squared minus four a c all over two a
However, this description presupposes some familiarity with the quadratic formula. A person learning the expression for the first time may not know how to interpret this phrase. He or she may assume this:
[image: image2.png]
or,

[image: image3.png]
And as expressions increase in complexity, these natural language descriptions quickly become wordy and less understandable.

Alternatively, the formula might be written in a parenthetical form that uses plaintext characters in place of mathematical symbols:

x = (-b +/- sqrt(b^2 - 4ac)) / (2a)
While this representation is more logically correct than natural language, there are still some problems. There is no standard for representing an expression. One author might use sqr for “square root” while another uses sqrt. Also notice that the structure of the main fraction is now somewhat obscured. Also, there is no explicit indication that this string of text should be read in a mathematical context. The screen reader would attempt to voice this as “x equals hyphen b plus forward-slash hyphen s q r t left-parenthesis b circumflex two hyphen four a c right-parenthesis forward-slash two a.”
These are only two examples of many that demonstrate the problems caused by forcing structured content into a linear form.
Steps toward Accessibility
In this model, accessibility can be achieved in two stages: improving the representation of content and improving the user’s interaction with content. The first goal is in separating content itself from the content’s representation. And this, in turn, separates the content from the user’s interaction with the content. The second goal involves using navigation to breakup content in such a way that exposes its underlying structure.

The Importance of Semantic Information
Content must originate in a form that lends itself to adaptation. Accessible forms of content include both the primary data and the information relating to its structure. Content has significantly less value once it has been separated from its logical structure. (This is synonymous with the classic distinction between raw data itself and information, which exposes the relationships of the data.) But attempting to glean the intended structure from content that does not explicitly specify structure is inefficient and apt to introduce errors. For instance, consider the problems involved with optical character recognition: identifying a single character requires a great deal of effort with no guarantee of accuracy. For this reason, the rampant use (or misuse) of raster images as a catch-all for structured content has built a wall between the sighted and blind communities. For instance, a cursory Web search for any mathematical topic will produce hundreds of pages with embedded expressions, almost all graphics, and completely useless to a screen reader. Extracting useful information from complex mathematical images would require an impractical amount of resources. Consider the impact of this issue on the blind community: the greatest repository for mathematical information, the World Wide Web, is mostly useless for the blind computer user. So, attempting to adapt this non-adaptable content should be seen as a fruitless endeavor. Instead, moving toward accessibility should focus on the adoption of content that incorporates semantic information. These representations are inherently accessible.

This begins by identifying appropriate formats for storing content. The markup languages specified by the World Wide Web Consortium are prime examples of such representations. These can be used to represent mathematics, music, handwriting, vector graphics, and much more. LaTeX is another popular markup language for representing mathematics; however, LaTeX has less semantic value than MathML because it relates solely to the visual presentation. So, adapting content in LaTeX would require more computational resources to interpret the intended meaning from just the visual symbols (but far less than OCR on an image). And accessible content is not at all limited to markup languages. For instance, serialized objects in binary format are very usable. Any form of content can be accessible, so long as there is some way of extracting structural information from the content.
This push for the adoption of semantic information in mainstream communication is nothing unfamiliar in computer science today. In fact, this accessibility model fits into a much larger movement – the same movement that encourages a distinction between the primary content and the styling of webpages for example. These techniques have demonstrated several benefits for communication, including better modularity and organization, easier maintenance, and faster propagation across networks (especially when raster images can be replaced by images created dynamically on the client’s machine). This accessibility model aims to establish a clear link between logical representations of information and accessibility. It encourages the world to view these types of structured content as the natural solution for today’s accessibility problems, even though means of adapting this content may not yet exist.
A General Navigation Model
With the incorporation of semantic information, the screen reader is able to distinguish between unstructured and structured content and react appropriately based on the context.
This opens up possibilities for new ways of interacting with content that relate more closely to the underlying logical structure. This is a stark constrast to simply streaming content to the user. At this stage, the accessibility model introduces a new element: navigation.
The navigation model uses two data structures, one for the primary content and another for the content’s structure. To maintain simplicity, the primary content is held entirely in text strings. So, the screen reader can use normal, linear operations for interacting with the primary content. However, the strings are subdivided based on the content’s underlying structure. The user’s focus is guided between each string through clearly defined connections. From the relationships defined in the structural information, the screen reader can construct a navigational model analogous to the actual configuration. To do this, the model uses a special container, which is referred to here as a node.
A node is considered an autonomous entity used to decompose content into easily metabolized portions. Each node contains a value (which is a text string) and a set of references to other nodes (child nodes). The node container is a conglomerate of two basic data structures: the graph (which, in this case, is a two-dimensional array) and the tree. Because of its design, the node supports two types of navigation, representative of each structure.

[image: image5.png]Graph navigation allows the user’s focus to move between child nodes that have a common parent. Each child node is assigned a coordinate that represents its position in the graph. The user is able to focus on each child node individually by moving up, down, left, and right. When a child node receives focus, the user is given its value (through whatever output – voice synthesis or Braille.) At this point, the user knows nothing about the details of the child node itself other than what is elicited by its value.
[image: image6.png]
Tree navigation allows the user’s focus to move between parent nodes and child nodes. The model represents all tree structures through composition, which adds a layered dimension. The user is able to focus inward on a node to view its contents in detail. To do this, the user descends into the child node that currently has focus. Once inside a node, the user is able to view that node’s children. The model maintains a history of the ancestor nodes through which the user has traveled to reach the current node. The user is then able to ascend out of a node to return to the previous position. The nodes can then be thought of as layers of abstraction. The value of each parent node should serve to somehow abstract its child nodes.

These two types of navigation are apparent in usual menu navigation. For instance on a typical file menu, the user might expect to find File, Edit, View, and Help. These might be thought of as the contents of a one-row, four-column array. Without opening a submenu, the user can highlight each item by placing the mouse over it. Imagine each word being spoken as the focus moves from item to item. This is graph navigation. The text value of each menu item serves to abstract its child items. The word File implies that its child items concern file operations (Open, Save, Close, etc.); however, user may not know in detail the contents of the submenu. To actually see these items, the user must enter the submenu. This is tree navigation. Once inside the submenu, the user can again use graph navigation to move between the child items before making a selection.
In addition, the model separates the user’s interaction into two modes: structural navigation mode and text navigation mode. Structural navigation concerns the movement of the user’s focus to the desired node. This includes graph and tree navigation, but also any additional functions that the developer chooses to provide (such as hotkeys). Once the user has navigated to the desired node, the user can interact with the node’s value through usual text navigation. Text navigation consists of all the normal text operations that current screen readers provide. At any given time, the user can interact with content in either of the two modes, but not both. This distinction promotes proper coordination between the different forms of interaction, ensuring that there is no interference between the two.
The developer can extend this basic navigation model to create interfaces for specific types of content. For instance, a Table Node might be used to adapt the previous table example:

	0
	1
	2

	3
	4
	5

At the root level, the Table Node might hold the value “table: two rows, three columns with values 0, 1, 2, 3, 4, 5.” The user can interrupt this stream of speech at any point. The user might descend into the Table Node to traverse individual values. At the initial position, the screen reader voices “0 at row 1, column 1.” Moving downward voices “3 at row 2, column 1.” Moving to the right voices “4 at row 1, column 2.” The user might then enter the node for text editing and change this value to “x”.
	0
	1
	2

	3
	x
	5

Notice that the cursor used to navigate between the cells of the table is different from the cursor for text editing, and the two do not interfere.
After making changes to the cell, the user might exit text editing mode and ascend back the root level, which now voices “table: two rows, three columns with values 0, 1, 2, 3, x, 5.” At this point, the user can continue to other parts of the document.
A Math Node might be used to adapt the quadratic formula:
[image: image4.png]
[image: image7.png]A natural language description is appropriate for the root level of the Math Node since it serves only to abstract the overall contents: “mathematical expression: x equals negative b plus or minus the square root of b squared minus four a c all over two a.” (This natural language phrase might be generated by a somewhat sophisticated method within the Math Node, not by the author of the content.) The user can interrupt this stream of speech at any point. The user can descend into the Math Node to see individual details. The user can now see the children of the root node, which are “x equals” and “fraction.” These children can be arranged in an array with two rows and one column. Moving downward would set the focus on “fraction.” The user can then descend into this node to see the numerator and denominator. The user can traverse the entire expression in a similar manner. A tree graph is shown to illustrate the internal structure of the Math Node.
Another significant advantage to this model is it’s decoupling of the content and its representation, allowing interchangeability between various implementations of an interface. (This can be implemented through a simple model-view-controller pattern.) The user might choose the implementation that he or she prefers. In most cases, there is no absolutely correct way of adapting information. For instance, one user might prefer an interface that explicitly “table” or “mathematical expression” for the corresponding nodes. But since speech is a slow form of communication, another implementation might use programmatic sounds to identify the type of node instead of words. So in anticipation of new and better ways of presenting content to the blind, this model incorporates an amount of scalability.
[image: image8.png]
For example, another implementation of the Math Node might use an expression tree for the inner content (for those users who are more engineering-minded). This clearly demonstrates that the best presentation is certainly a matter of personal preference.
Notice that this navigation model provides functionality similar to that of the visual glyph. When a person first views a glyph, the overall, abstract structure is most apparent. The user can focus between elements on the same level of abstraction to decide which should receive more attention. The user can then focus on the inner details of this element and so on. These two actions parallel graph and tree navigation.

Conclusion: Implications of Accessibility
The first part of this accessibility model promotes the acceptance of accessible content. This is not so much an appeal to the entire world, but rather to those who are directly involved in accessibility. A push for logically structured content, such as XML, has existed for several years. It is impractical to assume that wide-spread change will occur rapidly. Instead, the blind community might be used as a catalyst for change by demonstrating value of these ideas. Accessible technologies might make a debut in specific areas, such as education, where accessibility is an immediate concern. Consider this scenario: a math teacher could create class materials using a GUI interface that generates MathML. A blind student could access these materials in a familiar format, such as voice or Braille. The structured representation serves as an intermediate holding-place for the content, making the adaptation completely transparent to each end-user. The teacher has no knowledge of the voiced or Brailled representation, and the student has no knowledge of the visual representation. And if the non-impaired community notices the benefits of these technologies, the rest of the world might follow. For instance, all popular browsers might one day support MathML. And webpage editors might even provide built-in tools for graphically editing MathML expressions in web pages. The transition begins by simply making a clear link between semantic information and accessibility.
The second part of the accessibility model relates to the actual construction of a screen reader that properly handles this structured content. This part introduces a new model for creating interfaces that incorporate navigation into primary content to overcome content streaming. This part also emphasizes the independence of content from the user’s interaction and shows that there is no absolutely correct way to present content to every user. Therefore, this screen reader should be able to support multiple interfaces for the same content. (This might even suggest that the screen reader would benefit from an environment with multiple contributors, as in an open source project.) This second portion of the accessibility model stresses that developers should provide more options for interaction with content, rather than the strictly linear interaction provided by current screen readers.
As a whole, this accessibility model intends to benefit communication in general. First, there is the obvious benefit of introducing a once isolated group of people into mainstream communication. But beyond that, there are immediate benefits for non-impaired users as well. Logically structured content is easier to create and manipulate. It promotes faster Internet communication. And imagine the impact on information retrieval if more people supported this model. Consider the affect on communication if an Internet search engine allowed users to retrieve documents by entering pieces of mathematical expressions using graphical applets. This model intends to show that by becoming more accessibility-minded, everyone can benefit.

Copyright © 2007 Dustin M. Bray

